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Chapter 9

VIBRATORY  MOTION

There are two areas of interest when discussing oscillatory motion: the
mathematical characterization of vibrating structures that generate waves,
and the interaction of waves with other waves and with their surroundings.  We
will examine the former topic in this chapter, the latter in the next chapter.

A.)  Vibratory Motion--Basic Concepts:

1.)  For any structure to vibrate periodically, there must be a restoring
force on the body.  A restoring force is a force that is constantly attempting to
accelerate the object back toward its equilibrium position.

2.)  The easiest way to examine vibratory motion is with an example.  We
will use a spring system:

a.)  Consider the
mass  attached to the
spring shown in Figure
9.1.  When the spring is
neither compressed nor
elongated, the mass
feels no force and is,
hence, in a state of
equilibrium.

Note:  For this and
similar systems, the coordi-
nate axis used to define mass
position has its origin (i.e., x = 0) defined at the body's equilibrium position.

b.)  It has been experimentally observed that if an "ideal" spring (i.e.,
one of those mythical types that loses no energy during oscillation) is
displaced a distance ∆ x (see Figure 9.2), the force F required to displace
the spring will be proportional to the displacement ∆ x.  Put another way,
if a mass is attached to the spring and the spring is displaced a distance
∆ x, the spring will exert a force F on the mass when released.  That force
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will be proportional to the
spring's displacement from
its equilibrium position.

Defining k as the
proportionality constant
(units: nt/m), this force is:

F = -k ( ∆ x).

Called Hooke's Law, this
relationship and the motion it
describes is called "simple
harmonic motion."

Note 1:  Because ∆ x is measured from equilibrium (i.e., from x = 0), a
displacement x-units-long will equal ∆ x = xfinal - xinitial = x - 0.  In other words,
∆ x = x.  As such, HOOKE'S LAW IS ALWAYS WRITTEN:

        
F = - kx.

Note 2:  Be sure you understand which force Hooke's Law alludes to: it is
the force the spring applies to the mass, not the force the mass applies to the
spring.

Note 3:  The negative sign in front of the kx term ensures that the force is
always directed back toward the equilibrium position.  To see this, assume the
spring in Figure 9.2 has a spring constant of 2 nt/m and is displaced a distance
x = -.6 meters.  The force equation yields:

F = - [(2 nt/m) (-.6 m)]
    = +1.2 nts.

The direction of the spring's force on the mass is positive, just as common sense
would dictate.  Without the negative sign on the right hand side of the force
equation, the mathematics would not accurately model the situation.

3.)  Here are some DEFINITIONS needed for the discussion of vibratory systems:
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a.)  Periodic motion:  Any motion that repeats itself through time.

b.)  Simple harmonic motion:  Periodic motion whose force function is
of the form -kx, where k is a constant and x is the displacement of the
structure at some arbitrary point in time.

c.)  Frequency ( ν):  The number of cycles swept through per-unit-
time; the MKS units are cycles per second (i.e., hertz, abbreviated Hz).
The symbol used for frequency-- ν --is the Greek letter nu.

Important Note:  Cycles is not technically a unit.  In many texts, hertz is
defined as inverse seconds (i.e., 1/seconds).  We will use both, depending upon the
situation.

d.)  Period (T):  The time required to sweep through one complete
cycle.  The units are seconds per cycle (or just seconds).  Note that the
period and frequency of a body's motion are inversely related.  That is:

T = 1 / ν.

e.)  Displacement (x):  The distance a vibrating object is from its
equilibrium position at a given point in time.  Displacement is a time
varying quantity whose units are in meters or centimeters or whatever the
distance units are for the system.

f.)  Amplitude (A):  The maximum displacement xmax of an oscillating
body.  Assuming the vibratory motion does not lose energy, the amplitude of
the motion remains constant--it does not vary with time.  Amplitudes are
measured from equilibrium and have the same units as displacement.

Note:  It is interesting to observe that because the force function for a
spring is proportional to the spring's displacement (F = -kx), the period and,
hence, frequency of a given spring/mass system will be a constant.  Why?

An oscillation with a very small displacement will have a very small
distance to travel during one period, but it will also have a very small spring
force to motivate it.  An oscillation with a very large displacement will have a
very large distance to cover during one period, but it will have a very large spring
force to help it along.  The net result: whether you have big oscillations or small
oscillations, it takes the same amount of time to oscillate through one cycle.
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B.)  The Mathematics of Simple Harmonic Motion:

1.)  We would like to
derive an expression that defines
the displacement of a vibrating
object from equilibrium as a
function of time--i.e., x(t).  To gen-
erate the appropriate equation,
we will examine the vibratory
motion of a mass attached to a
spring (see Figure 9.3), using
Newton's Second Law to evaluate
the motion.

a.)  A free body
diagram is shown in
Figure 9.4.  Summing the
forces in the horizontal,
and leaving the sign of the
acceleration embedded

N
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f.b.d. on
   mass

FIGURE 9.4

within the ma, we get:

       ∑ Fx :

      -kx = ma
    ⇒     a + (k/m)x = 0.

b.)  We know that the acceleration
and velocity are related by a = dv/dt, and
that the velocity and displacement are
related by v = dx/dt.  As such, it is true
that a = d2x/dt2, where the notation used
is meant to convey the second derivative

of the position with respect to time.

c.)  Substituting a = d2x/dt2 into the force expression yields:
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d2x
dt2 + k

m




 x = 0 .

d.)  What does this equation really say?  It suggests that there exists
a function x such that when you add its second derivative to a constant
times itself, you ALWAYS get zero.

The question is, "What function will do the job?"
The answer is, "A sine wave."

2.)  The most general expression for a sine wave (see Figure 9.5a on the
next page) is:

     x(t) = A sin   ωt + φ( ) ,

where A is the amplitude of the displacement (i.e., its maximum possible
value); ω  is a constant called the angular frequency whose units are radi-
ans/second and whose significance will become clear later; and φ  is another
constant called the phase shift whose units are in radians and whose sig-
nificance will also be discussed later.

3.)  Using the Calculus on our sine function, we find that if:

x(t) = A sin   ωt + φ( ) .

a.)  The velocity of the motion will be:

v(t) = dx/dt
       = ωA cos   ωt + φ( ) .

b.)  The acceleration of the motion will be:

a(t) = dv/dt
        = -ω2A sin   ωt + φ( ) .

c.)  The graphs of all three of these functions are found in Figures
9.5a, b, and c.
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Note:  Notice that the horizontal
axis is not labeled in time t but rather in
ω  t.  Sine waves are functions of angles.
Angles must have arguments in angular
measure (radians in this case).  That
means the expression x = A sin t makes
no sense as written--you can't have a
sine argument whose units are in time.
To get around the problem, we modify
the time variable  by multiplying by ω
radians per second.

d.)  The maximum value for
both a sine and a cosine function is
1.  This means:

 

    vmax =  ωA
and

   amax =  ω2A

(where amax is a magnitude).

4.)  Analyzing the graphs:

a.)  Look at the first long,
vertical dotted line spanning
Figures 9.5a, b, and c:

i.)  The graphs suggest
that when the displacement x
is maximum-and-positive
(i.e., as far to the right of
equilibrium as it gets), the
acceleration is maximum-
and-negative.

Note:  A negative amplitude value
(-ω 2A = -10 m/s2, for instance) does not
signify a minimum.  The fact that -10 is
smaller than +10 on a number line is
not relevant here.  The value -ω 2A is the
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largest acceleration possible; the negative sign simply tells you the direction in
which it is a maximum.

ii.)  Back to the first vertical line:  When x is at its extremes, the
velocity of the body is zero.  This makes sense.  At the extremes the
body stops before beginning back in the opposite direction.

b.)    Look at the second long, vertical dotted line spanning Figures
9.5a, b, and c:

i.)  The graphs suggest that when x is zero (i.e., the body is at
equilibrium), the acceleration is zero.  This makes sense.  At equi-
librium the force applied to the body by the spring is zero, hence zero
acceleration would be expected.

ii.)  When x is at equilibrium, the velocity is a positive or negative
maximum, depending upon which direction the body is moving.  This
also makes sense intuitively.  Only when every bit of acceleration has
been exhausted in motivating the mass back toward the equilibrium
point will the velocity be at its maximum.  That occurs at
equilibrium.

5.)  If we go back to Newton's Second Law with this information:

a.)  Substituting our sine-related x(t) and a(t) functions back into our
force expression (i.e., a + (k/m) x = 0), we get:

[-w2A sin   ωt + φ( ) ] + (k/m) [A sin   ωt + φ( ) ] = 0.

b.)  Noting that the A's and the sine functions cancel, we end up with:
-ω2 + (k/m) = 0

      ⇒     ω  = (k/m)1/2.

6.)  Evidently, the function x(t) = A sin (ω t + f) satisfies the equation a +
(k/m) x = 0 as long as ω  = (k/m)1/2.

a.)  BIG GENERAL POINT:  If you can manipulate a Newton's
Second Law equation into the form:

   acceleration + (some constant) (displacement) = 0,

you know for certain that:
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i.)  The motion will be simple harmonic motion (versus some
other form of oscillatory motion); and

ii.)  The angular frequency ω  of the motion will be equal to the
square root of the constant in front of the displacement variable in the
manipulated N.S.L. equation.  In the case of a spring, Newton's
Second Law yielded:

     a + (k/m) x = 0,

and the constant in front of the position variable k/m was found to be
such that:

        ω  = (k/m)1/2.

b.)  You might not think much of this revelation now, but it is going
to be very useful later when we examine other kinds of vibrating systems.

Before we can look at these other types of vibrating systems, though,
we need to make some sense out of the angular frequency ω  and the
phase shift φ  terms.

C.)  Angular Frequency (ωω ):

1.)  Look at the POSITION VERSUS TIME
graph of a vibrating body (Figure 9.6).  How can I
tell you where the body is in its motion at a given
point in time?  How, for instance, can I tell you
that the body is at, say, Point A in Figure 9.6?

There are three ways to do the deed.  Each
is useful in its own way; each is listed below:

a.)  The first way has already been dis-
cussed.  I could simply say, "The body is at x
= A."  In that case, I am giving you the
"linear displacement" of the body at the
point-in-time of interest.

Though simple, it is not very useful if we want to know something
about how fast the oscillations are taking place.  That is, if I know the
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FIGURE 9.7

time it takes for the body to get from x = 0 to x = A, dividing the time into
the displacement will give only the average velocity over the motion--a
none-too-useful commodity in most cases.

b.)  Another possibility is to say, "The body is one quarter of a cycle
through its motion."  In that case, I am giving you the cyclic displacement
of the body.

If I additionally tell you how long it takes to achieve that position
within its cyclic motion, we can divide the time into that cyclic dis-
placement and come up with an expression for the body's frequency in
cycles per second.

For oscillatory motion, frequency measurements are very useful.

c.)  Another more exotic possibility is to say, "The body is /2 radi-
ans through its motion."  In this case, I would be giving you the angular
displacement of the body.

This very peculiar way of charac-
terizing the position of a vibrating
body is made simply by looking at
the graph of a sine function (see
Figure 9.7).  Notice that a body hav-
ing completed one full cycle has
moved through an angular displace-
ment of 2 radians.  Following log-
ically, a body having moved through
one-half cycle has displaced an
angular measure of  radians and a
body having moved through one-
quarter cycle has displaced /2
radians.  In other words, if you
understand the language, an angular displacement can tell you where a
body is in its motion just as well as a cyclic displacement can.

 If, further, we divide this radian-displacement by the time required
to get to that position, we end up with an expression for the body's
angular frequency ω  in radians per second.

2.)  One cycle is the equivalent of an angular measure of 2 radians.  That
means that oscillatory motion whose frequency is 1 cycle/second has an angular
frequency of 2 radians/second.  Expanding this, it becomes obvious that the
relationship between frequency ν  and angular frequency ω  is:

ω  = 2  ν.
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3.)  Reconsidering x(t) = A sin (ω t + φ ), the angular frequency ω   governs
how fast the function, hence body position, changes.  Large ω  means it takes very
little time for ω t to increment by 2 (i.e., move through one cycle), which means
the period of the function and the body's motion is small.  This corresponds to a
high frequency oscillation.  A small ω  does just the opposite.

D.)  Phase Shift ( φ):

1.)  A typical sine wave function is characterized by the graph shown in
Figure 9.8 and is mathematically written as:

  x(t) = A sin (ωt).

a.)  This expression predicts that at
t = 0, x = 0 (i.e., put in t = 0 and you get x
= 0!).  What's more:

b.)  Just after t = 0, the value of A
sin (ω t) is positive and gets larger as
time proceeds, just as the graph shows.

BIG NOTE:  The displacement variable
x(t) is measured from EQUILIBRIUM.  That
means that if you look at a graph of x(t) and
see that that variable is getting larger over a particular time interval (either
large in a positive sense or larger in a negative sense), it means that the
function is modeling motion that is moving AWAY FROM equilibrium.

c.)  The problem arises when we do not want the body to be at equi-
librium (x = 0) at t = 0.  For instance, what do we do if we want it to be at
x = A when we start the clock (i.e., at t = 0)?  Dealing with such problems
is exactly what the phase shift φ  is designed to do.  It allows one to make
compensations in the math so that a sine function can be used to char-
acterize oscillatory motion that doesn't assume x = 0 at t = 0.

2.)  Easy Example:  Assume we define the position of an oscillating body
as x = +A at t = 0.  How can we use a sine function to characterize that motion?

a.)  Notice that if we shift the vertical axis of the sine wave shown in
Figure 9.9a (next page) by /2 radians (see Figure 9.9b for the shifted
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version), we end up with
a graph that gives us x =
+A at t = 0 (Figure 9.9c).
In other words, adding
/2 to the sine's angle will
do for us exactly what we
want.

b.)  Mathematically,
we are suggesting that
the correct function is:

         x(t) = A sin (ωt + /2).

i.)  To check, we
know what the func-
tion's value should
be at t = 0: it should
be x = +A.

ii.)  Plugging t = 0
into the function we
are testing yields:

x(t=0) = A sin (ω  (0) + /2)
       = A sin (/2)
       = A.

Our function works!

c.)  The moral:  The
phase shift tells us how
much we have to translate
(shift) the vertical axis to define the correct displacement x at t = 0.

Note:  A "+" phase shift shifts the axis to the right; a "-" phase shift shifts
the axis to the left.

3.)  In the case above, it was obvious that the shift needed to be /2 radi-
ans.  Unfortunately, not all problems are this easy.  How does one determine
the phase shift for more complex situations?
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a.)  Assume you know where an oscillating body is supposed to be at t
= 0.  The key to determining the general sine wave function that will fit
the situation lies in evaluating the displacement equation x(t) at a
known point in time (preferably at t = 0), then solving that expression for
the appropriate φ .  The process will be formally presented using the
relatively easy case cited above.  We will then try the approach on more
difficult problems.

4.)  Advanced Example #1:  Assume that at t = 0, x = +A .

a.)  Putting that information into our displacement expression

   x(t) = A sin   ωt + φ( )
yields

   A = A sin (ω (0) + φ).

b.)  Dividing by A and multiplying w by zero gives us:

   1 = sin ( φ)
       ⇒   φ  = sin-1 (1)
            = 1.57             (i.e., /2).

This is exactly what we expected.

c.)  Knowing φ  for one point in time means we know it for all points
in time ( φ  is a constant for the motion).  Putting it back into our general
algebraic expression for the displacement gives us:

     x(t) = A sin (ωt + 1.57).

Note:  In most problems, you will have already determined both A and w.
That is, both will have numeric values.  As an example, if A = 2 meters and ω  =
7.5 radians/second, the finished expression will look like:

            x(t) = 2 sin (7.5t + 1.57).

5.)  Example #2:  Determine the general algebraic expression for the
displacement of a spring-mass system whose position at t = 0 is (3/4)A going
away from equilibrium (see Figure 9.10a and 9.10b on the next page).
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a.)  In general:

x(t) = A sin   ωt + φ1( ).

b.)  Substituting t =
0 and x = (3/4)A into our
general equation yields:

     (3/4)A = A sin   ω(0) + φ1( ) .

c.)  Dividing by A
and multiplying ω  by
zero gives us:

3/4 = sin ( φ1),

which implies that φ 1
is the angle whose sine
is 3/4, or

 φ1 = sin-1 (3/4)
 = .848 radians.

d.)  Putting our
value for φ  back into
our general algebraic
expression for the
displacement gives us:

x(t) = A sin (ωt + .848).

e.)  By shifting the axis of the sine wave by .848 radians (see Figure
9.10b), we get a graph that has the body's position equal to .75A at t = 0
and that additionally has the displacement proceeding away from
equilibrium just after t = 0.

6.)  Example #3--a little different twist:  Determine the general algebraic
expression for the displacement of a spring/mass system whose position at t = 0
is (3/4)A going toward equilibrium.



326

A
(3/4)A

push axis 0   radians so that

        at t=0, x=+(3/4)A

x(t)

FIGURE 9.11a

FIGURE 9.11b

(3/4)A
   at t=0

maximum displacement(A)
   to be achieved at some
                later time

direction of
   motion at t=0x = 0

2

t

shifted
  axis

original
   axis

Note:  This is almost exactly
the same as the problem in #5.  The
only difference is in the direction of
the motion just after t = 0.
Proceeding through the steps:

a.)  In general:

x(t) = A sin   ωt + φ2( ).

b.)  Substituting t = 0 and
x = (3/4)A into our general
equation yields:

         (3/4)A = A sin   ω(0) + φ2( ).

c.)  Dividing by A and
multiplying ω  by zero gives
us:

3/4 = sin ( φ2),

which implies that φ 2 is the
angle whose sine is 3/4, or

φ2 = sin-1 (3/4)
  = .848 radians.

d.)  THE SNAG:  This

x(t)

(3/4)A

0

0

1

2

t

at this time, body moving
 away from equilibrium

at this time, body moving
    toward equilibrium

FIGURE 9.12

suggests that the angle   φ 2 equals the
angle   φ1 , which clearly can't be the
case (see Figure 9.12).  What we need
is an angle that predicts motion that
proceeds back toward equilibrium
just after t = 0 . . . not an angle that
predicts motion that proceeds away
from equilibrium after t = 0.

Put a little differently, it is clear
from the sketch that there are two
phase shifts that can put x = (3/4)A
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at t = 0.  The first (i.e., φ 1) is the one we used in #5.  It corresponds to the
situation when, just after t = 0, the motion proceeds away from
equilibrium (look at the graph--the value for x gets more positive as time
progresses).

The second phase shift ( φ 2) is the one we want here.  It makes x =

(3/4)A at t = 0, and it also has the displacement going back toward
equilibrium as time progresses.

e.)  To determine
φ 2, we need to use
the symmetry of the
sine function (see
Figure 9.13).  Notice
from the figure that
the phase shift ( φ 2)
is equal to  - .848 ra-
dians, or 2.29 radi-
ans.

Using this, the
final expression
becomes:

                                x(t) = A sin   ωt + 2.29( ).

f.)  Bottom line:  Before deciding if the angle your calculator produces is
correct, make a sketch of a sine wave and decide whether you need φ 1 or φ 2.

7.)  Example #4:  Determine a general
algebraic expression for the displacement of
an oscillating body whose position at t = 0 is
(-3/4)A going away from equilibrium (see
Figures 9.14a).  Assume also that A = .6
meters and ω  = 12 rad/sec.

a.)  Using the same approach as
before:
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where

                          x(t) = A sin   ωt + φ3( )
     ⇒      (-3/4)(.6) = (.6) sin   ω(0) + φ3( )
     ⇒             -3/4 = sin ( φ3)

     ⇒                 φ3 = sin-1 (-3/4)
                = -.848 radians.

b.)  A negative phase
shift moves the axis to
the left.  Again, there are
two positions where an
axis can be placed so that
at t = 0, x = (-3/4)A (see
Figure 9.14b).  The first,
corresponding to an an-
gular shift of the axis of
φ 3, has the body moving
toward equilibrium just
after t = 0; the second,
corresponding to an an-
gular shift of the axis of
φ 4, has the body moving
away from equilibrium
just after t = 0.

In our example, the appropriate angular shift is φ 4.  The
displacement expression is, therefore:

   x(t) = (.6) sin   12t + 2.29( ).

8.)  The technique for determining phase shifts is simple.  Put the t = 0
value for displacement into x(t) = A sin (ω t + φ ), solve algebraically for φ , and
your calculator will crank out a number for you.

a.)  If the calculator's number is positive, shift the axis to the right.  If
the number is negative, shift the axis to the left.

b.)  The only thing tricky about the operation: in almost all cases
there will be two possible axes (i.e., shift angles) that will correspond to
the required t = 0 displacement.  Determine which is appropriate by
noting whether the motion is proceeding away from equilibrium or
toward equilibrium.  That information will dictate whether you can use
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your calculator-provided phase shift value or whether you will have to add
or subtract .

c.)  Whatever the case, you should end up with an expression that
looks something like x(t) = 2 sin (7.5t + 1.57).

E.)  Energy in a Vibrating System:

1.)  Consider the motion of a mass attached to a vibrating spring:

a.)  At the extremes, the body's velocity is zero (it's at a turn-around
point), its position is a maximum (i.e., x = A),  and all the energy in the
system is potential energy.

That is, at the extremes:

Etotal = U (xmax).

b.)  The potential energy function for a spring system is (1/2)kx2.  This means:

Etotal = U (xmax)

                       = (1/2)kxmax
2

           = (1/2)kA2.

c.)  Assuming there is no energy loss during the motion, the amplitude
of the motion remains constant and the total energy of the system is con-
served.  The energy flows back and forth between being potential and
kinetic, but the sum of the two is always equal to (1/2)kA2.

F.)  A summary example:

1.)  You have a spring hanging from the ceiling.  You know that if you
elongate the spring by 3 meters, it will take 330 nts of force to hold it at that
elongated position.

The spring is hung and a 5 kg mass is attached.  The system is allowed
to reach equilibrium; then is displaced an additional 1.5 meters and released.
For this system, what is the:

a.)  Spring constant?

b.)  Angular frequency?
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c.)  Amplitude?

d.)  Frequency?

e.)  Period?

f.)  Total energy?

g.)  Maximum velocity of the mass?

h.)  Position of the mass at maximum velocity?

i.)  Maximum acceleration of the mass?

j.)  Position of the mass at maximum acceleration?

k.)  General algebraic expression for the position of the mass as a
function of time, assuming that at t = 0 the body's position is located at y
= -A/4 going away from equilibrium?

2.)  Solutions:

a.)  F/x = 110 nt/m;  b.)  (k/m)1/2 = 4.7 rad/sec;  c.)  1.5 m (from observation);
d.)  ω  / 2 = .75 hz;  e.)  1 / ν = 1.33 sec/cycle;  f.)  (1/2)kA2 = 123.75 joules; g.)  ωA
= 7.05 m/s;  h.)  at equilibrium position;  i.)  ω2A = 33.135 m/s2;  j.)  at the
extremes;  k.)  either x(t) = 1.5 sin (4.7t + 3.39) or x(t) = 1.5 sin (4.7t - 2.89).

G.)  Another Kind of Vibratory Motion--The Pendulum:

1.)  Consider a swinging pendulum bob of
mass m at the end of a string of length L
positioned at an arbitrary angle θ  as shown in
Figure 9.15.  What is the system's frequency, period
of oscillation, angular frequency, etc.?

a.)  We will begin the same way we did
with the spring.  If the Newton's Second Law
equation for this situation matches the
form:

   acc. + (constant) disp. = 0,
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we know the motion will be simple harmonic and we know that the con-
stant will numerically equal the angular frequency squared.

b.)  The only difference between this situation and the spring situa-
tion is that in this case, the pendulum bob is moving in a rotational sense
around the string's point of attachment P.  The version of N.S.L. that is
applicable here, therefore, is the rotational version.

c.)  Figure
9.16a shows the
free body dia-
gram for the set-
up.  Figure 9.16b
shows that the
torque about
Point P due to
the tension T is
zero (the tension
force passes
through Point P),
and the torque
due to gravity is
mg (L sin θ ) (in
this case,   r⊥  is
L sin θ ).  Remembering that the moment of inertia for a point mass is
Iptmass = mL2, the rotational counterpart to Newton's Second Law yields:

  
∑ Γ p :

    -mg (L sin θ ) = Iα
 = (mL2) a

which implies:

   α + (g/L) sin θ  = 0.

d.)  This is not the form for which we were hoping.  Fortunately, if θ
is small and measured in radians, sin θ  = θ  (put your calculator in
radian mode and see what sin (.02) is--you should find that it is
.01999999--.02 to a good approximation).
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e.)  Making the small angle approximation, we get:

for θ  <<:

α + (g/L) θ  = 0.

f.)  Running a parallel from our spring experience, we know that the
oscillation's angular frequency must be:

  ω  = (g/L)1/2.

g.)  With the angular frequency ω , we can determine general alge-
braic expressions for the motion's frequency (ω /2) and period (1/ ν ).

2.)  Reiteration:  If you are ever asked to determine either the period or
frequency of an exotic oscillatory system, use N.S.L. and see if you can put the
resulting equation of motion into the form:

acc. + (constant)(displ.) = 0.

If you can do so, the motion will be simple harmonic in nature and the
angular frequency will equal the square root of the constant.  From there you can
easily determine the motion's frequency and/or period.
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QUESTIONS

9.1)  An ideal spring attached to a mass m = .3 kg provides a force equal to
-kx, where k = 47.33 nt/m is the spring's spring
constant and x denotes the spring's displacement
from its equilibrium position.  Let's assume that
when such a spring is displaced a distance x = 1
meter, the period of oscillation (this is defined as the
amount of time required for the system to oscillate
through one complete cycle) is T = .5 seconds per
cycle.

a.)  When the mass is displaced a distance 2x = 2
meters, what is its new period?

b.)  Given the numbers in the original statement of the set-up, would it
have been possible for the period to have been any other number other
than .5 seconds per cycle?  Explain.

9.2)  A vertical spring/mass system oscillates up and down.  At t = 0,
the mass is at Point A moving downward.  Through how many cycles
will the system have moved by the time the mass has passed by Point
A five times, not including its first passage at t = 0?

9.3)  When you attach a mass to an ideal spring, the force F provided to
the mass by the spring will be proportional to the displacement x of the
mass/spring system from its equilibrium position. Algebraically, that
proportionality can be written as an equality equal to F = -kx, where k is the
proportionality constant and is called the spring constant.  One of the things
that is interesting about the oscillatory motion of the mass attached to an ideal
spring is that the mass's motion will have a single period T.  That is, it will
always take the same amount of time for the mass to oscillate through one
cycle, no matter what the initial displacement was.  Having said that:

a.)  Sketch the Force versus Displacement graph for an ideal spring.
Remember that the displacement of a spring from its equilibrium
position can be either positive or negative.

b.)  Briefly, explain why the period of an ideal spring/mass system doesn't
change if the initial displacement of the mass is increased or
decreased.

c.)  Now for the fun part.  Consider a second, non-ideal spring whose force
expression is -bx3, where b is some spring constant.  On the graph you
produced in Part a, make an approximate sketch of the Force versus
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Displacement graph for this spring force (don't get anal about this--you
don't need numbers, just show the trend of the force as x goes positive
and negative).

d.)  Attach the non-ideal spring to the same mass you used in Part a and b.
It is possible to displace this spring/mass system so that when
released, it oscillates with the same period as was the case with the
ideal spring used in Part a.  Take that displacement, double it, displace
the system that doubled distance, and release.  Will the period of the
resulting oscillation be greater than, less than, or the same as T?

9.4)  Can a spring have a force function of -kx4?  Explain.

9.5)  You have access to Geppetto's Workshop, complete with Newton scales,
meter sticks, balances--all sorts of science-y things.  Someone gives you an ideal
spring and asks you to determine its spring constant.  How might you do that?

9.6)  Most people know that frequency measures the number of cycles through
which an object oscillates per unit time.  What does angular frequency measure?

9.7)  A fixed length of string is cut and loops are made at both ends.  The upper
end-loop is placed over a ceiling hook while the lower end-loop is used to
support a hook-mass m.  The mass is pulled to the side and released making a
pendulum that swings back and forth.  The period is measured as T.  The
original mass is removed and a second hook-mass from the same mass set, this
one of mass 10m, is placed on the string and made to swing back and forth with
the same amplitude.  The new period is found to be larger than T.

a.)  Does this mean the pendulum is swinging faster or slower?
b.)  Some students look at the data and conclude that the pendulum's

period is a function of the bob's mass.  In fact, this isn't true!  What is
probably causing the disparity in the periods?

9.8)  Newton's Second Law is used to sum up the forces acting on an oscillating
mass.  The resulting expression is then manipulated and found to have the
form (d2x/dt2) + bx = 0.  Having access to this expression:

a.)  What can you say about the system's angular frequency of the system?
b.)  What can you say about the system's frequency?
c.)  What can you say about the system's period?
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9.9)  What is the single characteristic that is common to all vibrating (oscillatory)
systems?

9.10)  The acceleration of gravity on earth is approximately six times that of the
acceleration on the moon.  A pendulum on earth has a period of 1 second per cycle.
Will the pendulum's period change if it is used on the moon?  If so, how so?

9.11)  Double the length of a pendulum arm.  How will the pendulum's
frequency change?  How will the pendulum's period change?

9.12)  How are frequency and period related?

9.13)  You are sitting on a jetty.  You notice ocean waves are
coming in approximately 10 meters apart.  It takes 30
seconds for three crests to pass you by.  What is the frequency,
period, and angular frequency of the wave train?

9.14)  A spring with spring constant k = .25 newtons per meter vibrates with
frequency ν  = .5 hertz.  Across the lab, a string with a small mass m = .15
kg attached to it is made into a simple pendulum.

a.)  If the frequency of the pendulum and the frequency of the spring are to
be the same, approximately how long must the string be?

b.)  Why are you being asked for an approximate answer?  That is, given
what you know, why can't you give an exact answer?

c.)  For the frequency to be good, is there any limit on the size of the
oscillations of the pendulum?

9.15)  What is the difference between a simple pendulum and a
physical pendulum of same mass and length?  What approach
would you use to derive from scratch an expression for the
period of either?

9.16)  You live in California (Los Angeles).  You're a physics teacher, complete
with sadistic streak.  You have your students calculate the period of a pendulum
system.  They determine that value to be T.  You then claim that no matter how
good and precise your students' set-up is, its period will never exactly equal the
theoretically calculated value, even if your students do the experiment in a
vacuum.  What are you talking about?  (Note:  This isn't obvious--think about
the parameters that determine a pendulum's period, and how they might be off).
Once you've figured out the problem, approximate by how much your theoretical
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period will be off (note that the latitude of LA is approximately 22o).  Is this
going to be noticeable?

9.17)  Consider the expression x = A sin (ω t + δ ).
a.)  What does the A term do for you ?
b.)  What does the ω  term do for you?
c.)  What does the δ  term do for you?
d.)  What does the expression in general do for you?

9.18)  Identify a system in which a restoring force exists, and identify what the
restoring force actually is in the system.

9.19)  Identify a system in which a restoring torque exists, and identify what
force provides that restoring torque.

PROBLEMS

9.20)  A spring/mass set-up oscillating in the vertical is found to vibrate
with an amplitude of .5 meters and a period of .3 seconds per cycle.  If the mass
is 1.2 kg, determine:

a.)  The frequency of oscillation;
b.)  The angular frequency;
c.)  The spring constant;
d.)  The maximum velocity (in general, where does this happen);
e.)  The maximum acceleration (in general, where does this happen);
f.)  How much energy is wrapped up in the system?

9.21)  A .25 kg mass sliding over a frictionless horizontal surface is
attached to a spring whose spring constant is 500 nt/m.  If the spring's
maximum velocity is 3 m/s, determine the motion's:

a.)  Angular frequency;
b.)  Frequency;
c.)  Period;
d.)  Amplitude;
e.)  Total energy;
f.)  Maximum force applied to the mass.
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9.22)  A body's motion is characterized by the expression:

   x(t) = .7 sin (14t - .35).

Determine the motion's:
a.)  Amplitude?
b.)  Angular frequency?
c.)  Frequency?
d.)  Position at t = 3 seconds?
e.)  Position at t = 3.4 seconds?
f.)   Velocity at t = 0?
g.)  Acceleration at t = 0?

9.23)  A pendulum consists of a small, 2 kg weight attached to a light
string of length 1.75 meters.  The pendulum is set up on a distant planet and
set in motion.  Doing so, it is observed that its period is 2 seconds per cycle.
What is the acceleration of gravity on the planet?

9.24)  The Newton's Second Law equation shown below came from the
analysis of an exotic pendulum system oscillating with a small angular dis-
placement.  It is:

a + (12g/7L) θ  = 0

a.)  Given the information provided above, how can you tell that the
system oscillates with simple harmonic motion?

b.)  What is the system's theoretical frequency of oscillation if the
pendulum length is assumed to be 1.3 meters?

9.25)  A 3 kg block is attached to a vertical spring.  The spring and mass are
allowed to gently elongate until they reach equilibrium a distance .7 meters below
their initial position.  Once at equilibrium, the system is displaced an additional .4
meters.  A stopwatch is then used to track the position of the mass as a function of
time.  The clock is started when the mass is at y = -.15 meters (relative to
equilibrium) moving away from equilibrium.  Knowing all this, what is:

a.)  The spring constant?
b.)  The oscillation's angular frequency?
c.)  The oscillation's amplitude?
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d.)  The oscillation's frequency?
e.)  The period?
f.)  The energy of the system?
g.)  The maximum velocity of the mass?
h.)  The position when at the maximum velocity?
i.)  The maximum acceleration of the mass?
j.)  The position when at the maximum acceleration?
k.)  A general algebraic expression for the position of the mass as a

function of time?

9.26)  A tunnel is dug through the earth from the North Pole to the South
Pole.  When done, Jack (the idiot) goes for the thrill of his life and jumps into
the hole.  The gravitational force on him is always directed toward the earth's
center, so Jack ends up oscillating back and forth between the two poles.

In the chapter on Gravitation, we derived an expression for the magnitude
of the gravitational force acting on a mass a distance r units from the earth's
center, where r < re with re being the earth's radius.

Tailored to our situation, that expression is:

   
  
FJ = − GmemJ

re
3









r

where me and re are the mass and radius of the earth, respectively, mJ is Jack's mass,
and r is Jack's position along the y-axis (we are assuming the tunnel is in the vertical).

Jack's father misses him.  As such, Papa has hired a surveillance
satellite whose orbit is such that every time Jack's head emerges momentarily
from the hole, the satellite and its cameras are directly above to snap photos.

For this to work, what must the satellite's period be?
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